Tag Archives: SFD

Cohesity: A secondary storage solution for the Hybrid Cloud?

Background

A key part of my typical day job involves staying on top of new technologies and key developments in the world of enterprise IT, with an aim to spot commercially viable, disruptive technologies that are not just cool tech but also have a good business value proposition with a sustainable use case.

To this effect, I’ve been following Cohesity since its arrival to the mainstream market back in 2015, keeping up to date on some of their platform developments with various feature upgrades such as v2.0, v3.0…etc with interest. SFD15 gave me another opportunity to catch up with them and get an up to date view on their latest offerings & the future direction. I liked what I heard from them! Their solution now looks interesting, their marketing message is a little sharper than it was a while ago and I like the direction they are heading in.

Cohesity: Overview


Cohesity claims to be a specialist, software defined, secondary storage vendor who specializes in modernization of the secondary storage tier within the hybrid cloud. Such secondary storage requirements typically include copies of your primary / tier 1 data sets (Such as test & dev VM data and reporting & analytics data) or file shares (CIFS, NFS…etc.). These types of data  tends to be often quite large and therefore typically cost more to store and process. Therefor storing them on the same storage solution as your tier 1 data can be un-necessarily expensive which I can relate to, as an enterprise storage customer as well as a channel SE in my past lives, involved in sizing and designing various storage solutions for my customers. Often, most enterprise customers need separate, dedicated storage solutions to store such data outside of the primary storage cluster but they are stuck with the same, expensive primary storage vendors for choice. Cohesity offers to provide a single, tailor made secondary data platform that spans across both ends of the hybrid cloud to address all these secondary storage requirements. They also provide the ability to act as a hybrid cloud backup storage target too with some added data management capabilities on top so that not only can they store data backups, but also do interesting things with those backup data, across the full Hybrid Cloud spectrum.

With what appears to be decent growth last year (600% revenue growth YoY) and some good customers already onboard, it appears that customers may be taking notice too.

Cohesity: Solution Architecture


A typical Cohesity software defined storage (SDS) solution on-premises comes as an appliance and can start with 3 nodes to form a cluster that provide linear scalable growth. An appliance will typically be a 2U chassis that accommodate 4 nodes and any commodity or an OEM HW platform is supported. Storage itself consist of PCI-e Flash (up to 2TB per node) + capacity disk, which is the typical storage architecture of every SDS manufacturer these days. Again, similar to most other SDS vendors, Cohesity uses Erasure coding or RF2 data sharding across the Cohesity nodes (within each cluster) to provide data redundancy, as a part of the SpanFS file system. Note that given its main purpose as a secondary storage unit, it doesn’t have (or need) an All Flash offering, though they may move in to the primary storage use case, at least indirectly in the future.

Cohesity storage solution can be deployed across to remote and branch office locations as well as to cloud platforms using virtual Cohesity appliances to work hand in hand with the on-premises cluster. Customers can then enable cross cluster data replication and various other integration / interaction activities in a similar way to NetApp Data Fabric works for example for primary data. Note however that Cohesity does not permit the configuration of a single cluster across platforms as of yet (where you can deploy nodes from the same cluster on premises as well as on the cloud enabling Erasure Coding to perform data replication in the way Hedvig storage solution permits for example), but we were hinted that this is in the works for a future release.

Cohesity also have some analytics capabilities built in to the platform which can be handy. The analytics engine uses MapReduce natively within its engine to avoid the need to build external analytic focused compute clusters (such as Hadoop clusters) and having to move (duplicate) data sets to be presented for analysis. The Analytics Workbench on Cohesity platform currently permits external custom code to be injected in to the platform. This can be used to search for contents inside various files held on the Cohesity platform including pattern matching that enables customers to search for social security or credit card numbers which would be quite handy to enforce regulatory compliance. During the SFD15 presentation, we were explained that the capabilities of this platform is being rapidly enhanced to enhance additional regulatory compliance policy enforcements such as those of GDPR. Additional information on Cohesity Analytics capabilities can be found here. Additional video explaining how this works can also be found here.

Outside of these, given the whole Cohesity solution is backed by a distributed file system that is software defined, they naturally have all the software defined goodness expected from any SDS solution such as global deduplication, compression, replication, file indexing, snapshots, multi protocol access, Multi tenancy and QoS within their platform.

My thoughts

I like Cohesity’s current solution and where they are potentially heading. However, the key to their success in my view, would ultimately be their price point which I am yet to see to make sense of where they belong amongst competition.

From a technology and strategy standpoint, Cohesity’s key use cases are very valid and the way they aim to address those is pretty damn good. When you think about the secondary storage use case, cost of serving out less performance hungry, tier 2 data (often large and clunky in size) through an expensive tier 1 storage array (where you have to include larger SAN & NAS storage controllers + additional storage), I cannot help but think that Cohesity’s secondary storage play is quite relevant for many customers. Tier 1 storage solutions, classic SAN /NAS solutions as well HCI solutions such as VMware vSAN or Nutanix, are typically priced to reflect their tier 1 use case. So, a cheaper, more appropriate secondary storage solution such as Cohesity could help save lots of un-necessary SAN / NAS / HCI costs for many customers by being able to now downsize their primary storage solution requirements. This may even further enable more and more customers to embrace HCI solutions for their tier 1 workload too resulting in even less of a need to have expensive, hardware centric SAN / NAS solutions except for when they are genuinely necessary. After all, we are all being taught the importance of rightsizing everything (thanks to the utility computing model introduced by the Public clouds), so perhaps it’s about time that we all look to break down the tier 1 and tier 2 data in to appropriately sized tier 1 and tier 2 storage solutions to benefit from the reduced TCO for the customer? It’s important to note though, that this rightsizing will only likely going to appeal to customers with heavy storage use cases such as typical enterprises and large corporate customers rather than the average small to medium customer who requires a typical multipurpose storage solution to host some VMs + some file data. This is evident in the customer stats provided to us during SFD15, where 70% of their customers are enterprise customers.

Both their 2 key use cases, Tier 2 data storage as well as backup storage now looks to incorporate cloud capabilities and allows customers to do more than just storing tier 2 data and storing back ups. This is good and is very time relevant indeed. They seem to take a very data centric approach to their use cases and their secret source behind most of the capabilities, the proprietary file system called SpanFS looks and feels very much like NetApp’s cDOT architecture with some enhancements in parts. They are also partnering up with various primary storage solutions such as Pure to enable replication of backup snapshots from Pure to Cohesity, while introducing additional features like built in NAS data protection from NetApp, EMC, Pure, direct integration with VMware vCF for data protection, direct integration with Nutanix for AHV protection kind of moves them closer to Rubrik’s territory which is interesting and ultimately provides customers the choice which is a good thing.

From a hardware & OEM standpoint, Cohesity has partnered up with both HPe and Cisco already and have also made themselves available on HPe pricebook so that customers can order the Cohesity solution using a HPe SKU which is convenient, though I’d personally urge customers to order directly from Cohesity (using your trusted solutions provider) where possible, rather than ordering through an OEM vendor where the pricing may be fixed or engineered to position OEM HW when its not always required.

Given their mixed capabilities of tier 2 data storage, backup storage, and ever-increasing data management capabilities across platforms, they are coopeting if not competing with a number of others such as NetApp who has a similar data management strategy in their “Data pipeline” vision (who also removes the need to have multiple storage silos in the DC for Tier 2 data due to features such as Clustered Data OnTAP & FlexClones), Veeam or even Pure storage. Given their direct integration with various SW & HCI platforms removing the need to have 3rd party backup vendors, they are likely going to be competing directly with Rubrik more and more in the future. Cohesity’s strategy is primarily focused on tier 2 data management and the secondary focus is on data backups and management of that data whereas Rubrik’s strategy appears to be the same but opposite order of priorities (backup 1st, data management 2nd). Personally, I like both vendors and their solution positioning’s as I can see the strategic value in both solutions offerings for customers. But most importantly for Cohesity, there don’t appear to be any other storage vendor, specifically focused on the secondary storage market like they do so I can see a great future for them, as long as their price point remains relevant and that great innovation keeps continuing.

You can watch all the videos from the #SFD15 recorded at the Cohesity HW in Santa Clara here.

If you are an existing Cohesity user, I’d be very keen to get your thoughts, feedback using the comments section below.

A separate post to follow looking at Cohesity’s SmapFS file system and their key use cases!

Chan

Impact from Public Cloud on the storage industry – An insight from SNIA at #SFD12

As a part of the recently concluded Storage Field Day 12 (#SFD12), we traveled to one of the Intel campuses in San Jose to listen to the Intel Storage software team about future of storage from an Intel perspective (You can read all about here).  While this was great, just before that session, we were treated to another similarly interesting session by SNIA – The Storage Networking Industry Association and I wanted to brief everyone on what I learnt from them during that session which I thought was very relevant to everyone who has a vested interest in field of IT today.

The presenters were Michael Oros, Executive Director at SNIA along with Mark Carlson who co-chairs the SNIA technical council.

Introduction to SNIA

SNIA is a non-profit organisation that was formed 20 years ago to deal with inter-operability challenges of network storage by various different tech vendors. Today there are over 160 active member organisations (tech vendors) who work together behind closed doors to set standards and improve inter-operability of their often competing tech solutions out in the real world. The alphabetical list of all SNIA members are available here and the list include key network and storage vendors such as Cisco, Broadcom, Brocade, Dell, Hitachi, HPe, IBM, Intel, Microsoft, NetApp, Samsung & VMware. Effectively, anyone using any and most of the enterprise datacenter technologies have likely benefited from SNIA defined industry standards and inter-operability

Some of the existing storage related initiatives SNIA are working on include the followings.

 

 

Hyperscaler (Public Cloud) Storage Platforms

According to SNIA, Public cloud platforms, AKA Hyperscalers such as AWS, Azure, Facebook, Google, Alibaba…etc are now starting to make an impact on how disk drives are being designed and manufactured, given their large consumption of storage drives and therefore the vast buying power. In order to understand the impact of this on the rest of the storage industry, lets clarify few key basic points first on these Hyperscaler cloud platforms first (for those didn’t know)

  • Public Cloud providers DO NOT buy enterprise hardware components like the average enterprise customer
    • They DO NOT buy enterprise storage systems (Sales people please read “no EMC, no NetApp, No HPe 3par…etc.”)
    • They DO NOT buy enterprise networking gear (Sales people please read “no Cisco switches, no Brocade switches, HPe switches…etc”.)
    • They DO NOT buy enterprise servers from server manufacturers (Sales people please read “no HPe/Dell/Cisco UCS servers…etc.)
  • They build most things in-house
    • Often this include servers, network switches…etc
  • They DO bulk buy disk drives direct from the disk manufacturers & uses home grown Software Defined Storage techniques to provision that storage.

Now if you think about it, large enterprise storage vendors like Dell and NetApp who normally bulk buy disk drives from manufacturers such as Samsung, Hitachi, Seagate…etc would have had a certain level of influence over how their drives are made given the economies of scale (bulk purchasing power) they had. However now, Public cloud providers who also bulk buy, often quantities far bigger than those said storage vendors would have, also become hugely influential over how these drives are made, to the level that their influence is exceeding that of those legacy storage vendors. This influence is growing such that they (Public Cloud providers) are now having a direct input towards the initial design of the said components (i.e disk drives…etc.) and how they are manufactured, simply due to the enormous bulk purchasing power as well as the ability they have to test drive performance at a scale that was not even possible by the drive manufacturers before,  given their global data center footprint.

 

Expanding on the focus these guys have on Software Defined storage technologies to aggregate all these disparate disk drives found in their servers in the data center is inevitably leading to various architectural changes in how the disk drives are required to be made going forward. For example, most legacy enterprise storage arrays would rely on the old RAID technology to rebuild data during drive failures and there are various background tasks implemented in the disk drive firmware such as ECC & IO re-try operations during failures which adds to the overall latency of the drive. However with modern SDS technologies (in use within Public Cloud platforms as well as some new enterprise SDS vendors tech), there are multiple copies of data held on multiple drives automatically as a part of the Software Defined Architecture (i.e. Erasure Coding) which means those specific background tasks on disk drives such as ECC, and re-try mechanism’s are no longer required.

For example, SNIA highlighted Eric Brewer, the VP of infrastructure of Google who talked about the key metrics for a modern disk drive to be,

  • IOPS
  • Capacity
  • Lower tail latency (long tail of latencies on a drive, arguably caused due to various background tasks, typically causes a 2-10x slower response time from a disk in a RAID group which causes a disk & SSD based RAID stripes to experience at least a single slow drive 1.5%-2.2% of the time)
  • Security
  • Lower TCO

So in a nutshell, Public cloud platform providers are now mandating various storage standards that disk drive manufacturers have to factor in to their drive design such that the drives are engineered from ground up to work with Software Defined architecture in use at these cloud provider platforms.  What this means most native disk firmware operations are now made redundant and instead the drive manufacturer provides an API’s through which cloud platform provider’s own software logic will control those background operations themselves based on their software defined storage architecture.

Some of the key results of this approach includes following architectural designs for Public Cloud storage drives,

  • Higher layer software handles data availability and is resilient to component failure so the drive firmware itself doesn’t have to.
    • Reduces latency
  • Custom Data Center monitoring (telemetry), and management (configuration) software monitors the hardware and software health of the storage infrastructure so the drive firmware doesn’t have to
    • The Data Center monitoring software may detect these slow drives and mark them as failed (ref Microsoft Azure) to eliminate the latency issue.
    • The Software Defined Storage then automatically finds new places to replicate the data and protection information that was on that drive
  • Primary model has been Direct Attached Storage (DAS) with CPU (memory, I/O) sized to the servicing needs of however many drives of what type can fit in a rack’s tray (or two) – See the OCP Honey Badger
  • With the advent of higher speed interfaces (PCI NVMe) SSDs are moving off of the motherboard onto an extended PCIe bus shared with multiple hosts and JBOF enclosure trays – See the OCP Lightning proposal
  • Remove the drives ability to schedule advanced background operations such as Garbage collection, Scrubbing, Remapping, Cache flushes, continuous self tests…etc on its own and allow the host to affect the scheduling of these latency increasing drive maintenance operations when it sees fit – effectively remove the drive control plane and move it up to the control of the Public Cloud platform (SAS = SBC-4 background Operation Control, SATA = ACS-4 advanced background operaitons feature set, NVMe = Available through NVMe sets)
    • Reduces unpredictable latency fluctuations & tail latency

The result of all these means Public Cloud platform providers such as Microsoft, Google, Amazon are now also involved at setting industry standards through organisations such as SNIA, a task previously only done by hardware manufacturers. An example is the DePop standard which is now approved at T13 which essentially defines a standard where the storage host will shrink the usable size of the drive by removing the poor performing (slow) physical elements such as drive sectors from the LBA address space rather than disk firmware. The most interesting part is that the drive manufacturers are now required to replace the drives when enough usable space has shrunk to match the capacity of a full drive, without necessarily having the old drive back (i.e. Public cloud providers only pay for usable capacity and any unusable capacity is replenished with new drives) which is a totally different operational and a commercial model to that of legacy storage vendors who consume drives from drive manufacturers.

Another concept that’s pioneered by the Public cloud providers is called Streams which maps lower level drive blocks with an upper level object such as a file that reside on it, in a way that all the blocks making the file object are stored contiguously. This simplifies the effect of a TRIM or a SCSI UNMAP command (executed when the file is deleted from the file system) which reduces delete penalty and causes lowest amount of damage to SSD drives, extending their durability.

 

Future proposals from Public Cloud platforms

SNIA also mentioned about future focus areas from these public cloud providers such as,

  • Hyperscalers (Google, Microsoft Azure, Facebook, Amazon) are trying to get SSD vendors to expose more information about internal organization of the drives
    • Goal to have 200 µs Read response and 99.9999% guarantee for NAND devices
  • I/O Determinism means the host can control order of writes and reads to the device to get predictable response times –
    • Window of reading – deterministic responses
    • Window of writing and background – non-deterministic responses
  • The birth of ODM – Original Design Manufacturers
    • There is a new category of storage vendors called Original Design Manufacturer (ODM) direct who package up best in class commodity storage devices into racks according to the customer specifications and who operate at much lower margins.
    • They may leverage hardware/software designs from the Open Compute Project (OCP) or a similar effort in China called Scorpio, now under an organization called the Open Data Center Committee (ODCC), as well from as other available hardware/software designs.
    • SNIA also mentioned about few examples of some large  global enterprise organisations such as a large bank taking the approach of using ODM’s to build a custom storage platform achieving over 50% cost savings over using traditional enterprise storage

 

My Thoughts

All of these Public Cloud platform introduced changes are set to collectively change the rest of the storage industry too and how they fundamentally operate which I believe would be good for the end customers. Public cloud providers are often software vendors who approaches every solution with a software centric solution and typically, would have highly cost efficient architecture of using cheapest commodity hardware with underpinned by intelligent software. This will likely re-shape the legacy storage industry too and we are already starting to see the early signs of this today through the sudden growth of enterprise focused Software Defined Storage vendors and legacy storage vendors struggling with their storage revenue. All public cloud computing and storage platforms are a continuous evolution for the cost efficiency and each of their innovation in how storage is designed, built & consumed will trickle down to the enterprise data centers in some shape or form to increase overall efficiencies which surely is only a good thing, at least in my view. And smart enterprise storage vendors that are software focused, will take note of such trends and adopt accordingly (i.e. SNIA mentioned that NetApp for example, implemented the Stream commands on the front end of their arrays to increase the life of the SSD media), where as legacy storage / hardware vendors who are effectively still hugging their tin, will likely find the future survival more than challenging.

Also, the concept of ODM’s really interest me and I can see the use of ODM’s increasing further as more and more customers will wake up to the fact that they have been overpaying for their storage for the past 10-20 years in the data center due to the historically exclusive capabilities within the storage industry. With more of a focus on a Software Defined approach, there are large cost savings to be had potentially through following the ODM approach, especially if you are an organisation of that size that would benefit from the substantial cost savings.

I would be glad to get your thoughts, through comments below

 

If you are interested in the full SNIA session, a recording of the video stream us available here and I’d recommend you watch it, especially if you are in the storage industry.

 

Thanks

Chan

P.S. Slide credit goes to SNIA and TFD

Storage Field Day (#SFD12) – Vendor line up

Following on from my previous post about a quick intro to Storage Field Day (#SFD12) that I was invited to attend in San Jose this week as an independent thought leader, I wanted to get a quick post out on the list of vendors we are supposed to be seeing. If you are new to what Tech Field Day / Storage Field Day events are, you’ll also find an intro in my above post.

The event is starting tomorrow and I am currently waiting for my flight to SJC at LHR, and its fair to say I am really looking forward to attending the event. Part of that excitement is due to being given the chance to meet a bunch of other key independent thought leaders, community contributors, Technology evangelists from around the world as well as the chance to meet Stephen Foskett (@SFoskett) and the rest of the #TFD crew from Gestalt IT (GestaltIT.com) at the event. But most of that excitement for me is simply due to the awesome (did I say aaawwwesommmmmmeee?) list of vendors that we are supposed to be meeting with to discuss their technologies.

The full list & event agenda goes as follows

Wednesday the 8th

  • Watch the live streaming of the event @ https://livestream.com/accounts/1542415/events/6861449/player?width=460&height=259&enableInfoAndActivity=false&defaultDrawer=&autoPlay=false&mute=false
  • 09:00 – MoSMB presentation
    • MoSMB is a fully compliant, light weight adaptation of SMB3 made available as proprietory offering by Ryussi technologies. In effect its a BMS3 server on Linux & Unix systems. They are not a technology I had come across before so really looking forward to getting to know more about them and their offerings and their partnership with Microsoft…etc.
  • 10:00 – StarWind Presents
    • Again, new technology to me personally, which appears to be a Hyper-Converged appliance that seem to unify commodity server disks and flash with multiple hypervisors. Hyper-Converged platforms are very much of interest to me and I know the industry leading offerings on this front such as VMware VSAN & Nutanix fairly well. So its good to get to know these guys too and understanding what are their Unique Selling Points / differentiators to the big boys.
  • 13:00 – Elastifile Presents
    • Elastic Loud File System from Elastafile is supposed to be able to provide application level distributed file / object system spanning private cloud and public cloud to provide a hybrid cloud data infrastructure. This one is again new to me so keen to understand more about what makes them different to other similar distributed object / storage solutions such as HedVig / Scality from my perspective. Expect my analysis blog post on this one after I’ve met up with them for my initial take!
  • 16:00 – Excelero Presents (hosted at Excelero office in the Silicon Valley)
    • These guys are a new vendor that is literally due to launch themselves on the same day as we speak to them. Effectively they don’t exists quite yet. So quite exciting to find out who they are what they’ve got to offer us in this increasingly growing, rapidly changing world of enterprise IT.
  • 19:00 – Dinner and Reception (Storage Cocktails?) with presenters and friends at Loft Bar and Bistro in San Jose
    • Good networking event with the presenters from the day for peer to peer networking and further questioning on what we’ve heard from them during the day.

Thursday the 9th of March

  • 08:00 (4pm UK time) – Nimble Storage Presents
    • Nimble are a SAN vendor that I am fairly familiar with and have known them for a fairly long time and I also have few friends that work at Nimble UK. To be fair, I was never a very big fan of Nimble personally as a hybrid SAN vendor as I was  more a NetApp, EMC, HPe 3Par kinda person for hybrid SAN offering which I’ve always thought offer the same if not better tech for roughly a similar price point, with the added benefit of being large established vendors. Perhaps I can use this session to understand where Nimble is heading now as an organisation and what differentiators / USP’s they may have compared to big boys and how they plan to stay relevant in an industry which is generally in decline as a whole.
  • 10:45 – NetApp Presents (At NetApp head office in Silicon Valley)
    • Now I know a lot about NetApp :-). NetApp was my main storage skill in the past (still is to a good level) and I have always been very close to most NetApp technologies, from both presales and deliver perspective and was also awarded as the NetApp partner System Engineer of the Year (2013) for UK & Ireland by NetApp. However since the introduction of cDOT properly to their portfolio, I’ve always felt like they’ve lost a little market traction a little. I’m very keen to listen to NetApp’s current messaging and understand where their heads are at, and how their new technology stack including SolidFire is going to be positioned against other larger vendors such as Dell EMC, HPe 3Par as well as all the disruption from Software Defined storage vendors.
  • 12:45 (20:45 UK time) – Lunch at NetApp with Dave Hitz
    • Dave Hitz  (@DaveHitz) who was the NetApp founder is a legend… Nuff said!
  • 14:00 – Datera Presents
    • Datera is a high performance elastic block storage vendor and is again quite new to me. So looking forward to understanding more about what they have to offer.
  • 19:30 – San Jose Sharks hockey game at SAP Center
    • Yes, its an evening watching a bit of Ice Hockey which, I’ve never done before. To be clear, Ice Hockey is not one of my favourite sports but happy to take part in the event :0).

Friday the 10th of March

  • 09:00 (17:00 UK time) – SNIA Presents (@Intel Head office)
    • The Storage Networking Industry Association is a non profit organisation made up of various technology vendor companies.
  • 10:30 (18:30 UK time) – Intel Presents (@Intel Head office)
    • I don’t think I need to explain / introduce Intel to anyone. If I must, they kinda make some processors :-). Looking forward to visiting Intel office in the valley.

All and all, its an exciting line up of vendors and some old and some new vendors which I’m looking forward to meeting.

Exciting stuff, cant wait…! Now off to board the flight. See you on the other side!

Chan

 

Storage Field Day (#SFD12) – A quick intro!

I’ve been very fortunate enough to be invited to attend the popular Tech Field Day (#SFD12) to be held in March 2017 in Silicon Valey so a quick post to share my initial thoughts & about the event itself.

Tech Field Day is a popular, invitees only, an independant IT influencer event organised and hosted by  Gestalt IT (GestaltIT.com). The idea behind the event is to bring together innovative technology product vendors and independant thought leaders from around the globe with an active community contribution to share information and opinions interactively.  There are various different field day events such as Tech / Storage / Cloud / Mobility / Networking / Virtualisation / Unified Communications / Wirelesss Field Day events that take place throughout the year with respective technology vendors. It’s organised by the long time leader Stephen Foskett (@SFoskett) and has always been an extremely popular event amongst the vendors as it provides an ideal opportunity to present their new products and solutions to a number of thought leaders and community influencers from around the world and get their valueable thoughts & feedback.

I’ve been wanting to attend as a delegate for a while now but as the event was an invitee only event for the delegates, I wasn’t able to just sign up and attend. However this time around, I was extremely lucky to have been invited attend the next event Storage Field Day (#SFD12) in San Jose on March 7th-10th which I’m now looking forward to.

The details around the SFD12 event that I will be attending, including the rest of the invited delegates as well as the presenting vendor details are all available here. I will aim to provide a summary outlining my thoughts on various technologies & solutions we are going to be discussing about focusing on not just their technical value but also the business value to potential customers so stay tuned…!

In the meantime, if you would like to attend a fiuture Tech Field Day Event, all the information you need and how to apply are listed here. If you would like to see what the typical event sessions look like, have a look at their youtube feed here for past event recordings.

Thanks

Chan